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TECHNICAL PUBLICATION

ON THE RELATION BETWEEN SPOTLESS DAYS AND THE SUNSPOT CYCLE

1.  INTRODUCTION

In the mid-19th century (1826–1868), a German apothecary and amateur astronomer, Samuel 
Heinrich Schwabe, studied the Sun’s annual variation of the number of clusters of spots and the number 
of days when no spots were observed. From his observations, he found that the Sun’s spottedness varies 
over an interval of ≈10 yr, with the peak in the number of clusters of spots indicating a maximum in solar 
activity and the peak in the number of days when no spots were observed indicating a minimum in solar 
activity. Thus, he asserted that solar activity, as evinced by sunspots, varies somewhat regularly over time 
in cyclic fashion.1–5

Following this startling declaration, the professional Swiss astronomer Rudolf Wolf devised a sim-
ple formula for describing the solar cycle, one that combines the number of groups—similar to Schwabe’s 
clusters of spots—and the actual number of individual spots that can be seen on the Sun each day. On the 
basis of his relative sunspot number, he was able to approximate the past record of solar activity from 
the days of Galileo Galilei (1610) and initiate an international collaboration for monitoring sunspots that 
continues through the present. In contrast to the 10-yr length found by Schwabe, Wolf found the average 
length of the solar cycle to be ≈11 yr, although, strictly speaking, individual cycles were seen to vary in 
length up to several years either side of the 11-yr average.5–8

More recently, on the basis of another proxy of solar activity—the group sunspot number, argu-
ments have been raised that, while the two proxies of solar activity differ only slightly since about 1882, 
their differences are more substantial during earlier years. Hence, because the group sunspot number is 
based on a greater number of observers than was used by Wolf, it has been suggested that Wolf’s recon-
struction—both in terms of timing and amplitude—might be in error, especially for the earliest cycles—
those prior to the mid-1800s.9–16

About 10 yr ago, Wilson showed that the first spotless day (FSD) prior to the onset of the new 
cycle, which occurs during the declining phase of the old cycle, can be used for the prediction of the 
occurrence of solar minimum of the new cycle.17 In this Technical Publication, the use of spotless days in 
relation to the timing and size of the solar cycle is again examined, but in much greater detail, as part of a 
continuing study of the characteristics of sunspot cycles.18–55
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2.  RESULTS AND DISCUSSION

2.1  Characteristics of Spotless Days

Figure 1 (bottom) displays the variation of smoothed monthly mean sunspot number (the 12-mo 
moving average of monthly mean sunspot number) for the interval of January 1973 through January 2004, 
plotted as the dotted line. Individual sunspot cycle numbers (21–23) are identified along the bottom, as 
are the epochs of cycle minimum (Em) and maximum (EM). Conventionally, a sunspot cycle is reckoned 
using smoothed monthly mean sunspot number for determining its minimum and maximum, ascent and 
descent durations, and period (or cycle length). In the upper portion of figure 1, the number of spotless 
days (NSD) is plotted, which allows for easy identification of the occurrences of the FSD and the last 
spotless day (LSD) for each of cycles 21–23. The actual number of spotless days that were observed in 
each of the cycles is also shown. Depicted between the two timelines are various descriptors based on the 
occurrence of spotless days. These include t1, t2, t3, and t4, where t1 is the elapsed time from the epoch 
of FSD to Em, t2 is the elapsed time from the epoch of LSD to EM, t3 is the elapsed time from the epoch 
of FSD to the epoch of LSD, and t4 is the elapsed time from the epoch of LSD for cycle n to the epoch of 
FSD for cycle n + 1.
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Figure 1.  Variation of smoothed monthly mean sunspot number and spotless days 
 for January 1973 through January 2004.
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Table 1 summarizes selected parameters for the modern era sunspot cycles 10–24, including some 
information on cycle 9. Identified in the table are the cycle number, the epochs of FSD, minimum, LSD, 
and maximum—E(FSD), Em, E(LSD), and EM; t1, t2, t3, and t4; ascent duration (ASC) and period (PER); 
the number of spotless days (NSD) during t1, t3, and ASC; the minimum and maximum amplitudes Rm 
and RM; and the ascent-period (AP) and ascent-maximum amplitude (AM) classifications of the cycles 
based on their median values, where sl, fl, ss, and fs mean, respectively, slow rise-long period, fast rise-
long period, slow rise-short period, and fast rise-short period for the AP class, and SL, FL, SS, and FS 
mean, respectively, slow rise-large amplitude, fast rise-large amplitude, slow rise-small amplitude, and 
fast rise-small amplitude for the AM class. 

Table 1.  Selected sunspot cycle parameters.

NSD Class

Cycle E(FSD) Em E(LSD) EM
t1

(mo)
t2

(mo)
t3

(mo)
t4

(mo)
ASC
(mo)

PER
(mo)

t1
(mo)

t3
(mo)

ASC
(mo) Rm RM AP AM

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 –
May 1849
Oct 1861
May 1873
Jan 1885
Nov 1895
Oct 1906
Apr 1920
Sep 1930
Nov 1941
Dec 1950
Nov 1961
Jul 1973
Nov 1983
Apr 1994
Jan 2004

Jul 1843
Dec 1855
Mar 1867
Dec 1878
Mar 1890
Jan 1902
Aug 1913
Aug 1923
Sep 1933
Feb 1944
Apr 1954
Oct 1964
Jun 1976
Sep 1986
May 1996
 –

 –
Apr 1858
Jul 1869
Sep 1883
Dec 1891
Jul 1905
Oct 1916
Jul 1926
Jul 1935
Sep 1945
Oct 1955
Aug 1966
Jul 1977
Jul 1987
Jan 1998
 –

Feb 1848
Feb 1860
Aug 1870
Dec 1883
Jan 1894
Feb 1906
Aug 1917
Apr 1928
Apr 1937
May 1947
Mar 1958
Nov 1968
Dec 1979
Jul 1989
Apr 2000
 –

 –
 79
 65
 67
 62
 74
 82
 40
 36
 27
 40
 35
 35
 34
 25
 –

 –
 22
 13
 3
 25
 7
 10
 21
 21
 20
 29
 27
 29
 24
 27
 –

 –
 107
 93
 124
 83
 116
 120
 75
 58
 46
 58
 57
 48
 44
 45
 –

 –
 42
 46
 16
 47
 15
 42
 50
 76
 63
 73
 83
 76
 81
 72
 –

 55
 50
 41
 60
 46
 49
 48
 56
 43
 39
 47
 49
 42
 34
 47
 –

 149
 135
 141
 135
 142
 139
 120
 121
 125
 122
 126
 140
 123
 116
 –
 –

 –
 296
 202
 737
 580
 628
 724
 316
 298
 114
 226
 117
 189
 187
 134
 –

 –
 654
 405
 1,010
 734
 934
 1,021
 531
 568
 268
 445
 226
 272
 273
 307
 –

 –
 358
 203
 273
 154
 306
 297
 215
 270
 154
 219
 109
 83
 86
 173
 –

10.5
3.2
5.2
2.2
5
2.6
1.5
5.6
3.4
7.7
3.4
9.6

12.2
12.3

8
 –

131.6
97.9

140.5
74.6
87.9
64.2

105.4
78.1

119.2
151.8
201.3
110.6
164.5
158.5
120.8

 –

sl
sl
fl
sl
fl
sl
ss
ss
fs
fs
fs
sl
fs
fs
f?*
–

SL
SS
FL
SS
FS
SS
SS
SS
FL
FL
FL
SS
FL
FL
FL
–

t1: E(FSD) Em
t2: E(LSD) EM
t3: E(FSD) E(LSD)
t4: E(LSD)n E(FSD)n�1                                                                                              

* Period has not, as yet, been strictly determined.

Figures 2 and 3, respectively, show the 2 × 2 contingency tables for the AP and AM classes. Clearly, 
of the two classification schemes, the AM classification is presently the only statistically significant group-
ing, having a probability of obtaining the observed result, or one more suggestive of a departure from 
independence, based on Fisher’s exact test,56 P = 0.9 percent. Thus, there appears to exist a real correla-
tion between the length of rise of a cycle and its maximum amplitude, associating fast-rising cycles with 
larger than average sized cycles and slow-rising cycles with smaller sized cycles. This correlation is often 
referred to as the “Waldmeier effect,” named in honor of Max Waldmeier, a former director of the Swiss 
Federal Observatory in Zürich, Switzerland, who first suggested such a relationship. (Interestingly, if 
cycle 23 turns out to be a cycle of shorter length, then it would be classified as fs and the probability would 
be reduced from 14.3 percent to ≈10 percent, which indicates a marginally significant result for the AP 
classification scheme.)
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 Figure 2.  Ascent-period class of sunspot Figure 3.  Ascent-maximum amplitude class
 cycles for cycles 9–22.   of sunspot cycles for cycles 9–23.

2.2  Cyclic Variations

Figure 4 depicts the cyclic variation of Rm, RM, ASC, and PER for the modern era cycles. In fig-
ure 4 and succeeding figures, except figs. 13 and 15, filled triangles indicate cycles of shorter length and 
filled circles indicate cycles of longer length. The filled box, associated with cycle 23, merely indicates 
that its period class is presently unknown.

80

60

40

20

0
10 12 14 16 18 20 22 24

10 12 14 16 18 20 22 24

160

140

120

100

80
10 12 14 16 18 20 22 24

10 12 14 16 18 20 22 24

Cycle

M
on

th
s

M
on

th
s

Sm
oo

th
ed

 M
on

th
ly

 M
ea

n
Su

ns
po

t N
um

be
r

Sm
oo

th
ed

 M
on

th
ly

 M
ea

n
Su

ns
po

t N
um

be
r

Cycle

Cycle Cycle

20

15

10

5

0

200

150

100

50

0

(a) (b)

(c) (d)
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On average, the elapsed time from cycle minimum to succeeding cycle minimum is ≈131 mo, 
having a standard deviation of ≈10.3 mo. Close inspection of PER, however, reveals that seven of the last 
eight fully described sunspot cycles have been cycles of shorter period, averaging ≈121.9 mo and having 
a standard deviation of 3.3 mo. Thus, statistically speaking, if cycle 23 turns out to be a cycle of shorter 
period, then Em for cycle 24 would be expected to occur about August 2006 ± 8 mo. On the other hand, if 
cycle 23 bucks this recent trend and turns out to be a cycle of longer period, averaging ≈138.7 mo with a 
standard deviation of 3 mo, then Em for cycle 24 would be delayed until about late 2007 to early 2008.

Interestingly, if cycle 23 turns out to be a cycle of shorter period, then both Rm and RM would 
be expected to be larger than average in size, since shorter period cycles often are followed by cycles of 
larger than average minimum and maximum amplitudes. From figure 4, it can be shown that there exists a 
statistically significant (at the 0.5-percent level of significance or 99.5-percent level of confidence) upward 
trend in Rm, one that can be described linearly as y = – 4.416 + 0.622 x, where y is Rm and x is the cycle 
number. The inferred regression has a coefficient of correlation r = 0.726 and standard error of estimate 
(se) of 2.6 units of sunspot number. Thus, presuming that the upward trend in Rm continues, cycle 24 
would be expected to have an Rm = 10.5 ± 4.6—the 90-percent prediction interval.

On the basis of figure 4, evidence for a strong upward linear trend in RM is lacking. However, 
as shown in a previous study using group sunspot number,16 the trend is quite noticeable, suggesting an 
RM that measures ≈136.5 ± 41.3—the 90-percent prediction interval—for cycle 24. Also, because of the 
Waldmeier effect, a larger than average sized RM for cycle 24 implies that its ASC will be shorter than 
average, meaning that cycle 24 would be expected to be a fast-rising cycle, one that peaks in <4 yr after 
Em, or probably sometime in 2010.

Figure 5 displays the variation of t1, t2, t3, and t4. As before for Rm and RM, variations of these 
parameters also appear to vary systematically, with a substantial decrease being seen in t1 and t3 and a 
substantial increase being seen in t2 and t4.

For t1, eight of the last eight cycles (16 –23) have had a value that has ranged between 25 and  
40 mo, averaging ≈34 mo with a standard deviation of 5.5 mo. Thus, presuming cycle 24 to behave simi-
larly to cycles 16–23, Em for cycle 24 should occur about November 2006±10 mo, using January 2004 as 
E(FSD), for cycle 24, a date in close agreement found previously based on the assumption that cycle 23 
is a cycle of shorter period.

For t2, eight of the last eight cycles (16 –23) have had a value that has ranged between 20 and  
29 mo, averaging ≈25 mo with a standard deviation of 3.7 mo. Thus, presuming cycle 24 to behave simi-
larly to cycles 16 –23, EM for cycle 24 should follow E(LSD) by 2 yr. E(LSD) for cycle 24 has not yet 
been observed.

For t3, eight of the last eight cycles (16–23) have had a value that has ranged between 44 and  
75 mo, averaging ≈54 mo with a standard deviation of 10 mo. Thus, presuming cycle 24 to behave simi-
larly to cycles 16 –23, the interval between E(FSD) and E(LSD) for cycle 24 should extend ≈4.5 yr, infer-
ring that E(LSD) for cycle 24 should occur sometime in 2008.
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Figure 5.  Variation of (a) t1, (b) t2, (c) t3, and (d) t4 for cycles 10 –23.

For t4, eight of the last eight cycles (16 –23) have had a value that has ranged between 50 and  
83 mo, averaging ≈72 mo with a standard deviation of 11 mo. Thus, presuming cycle 24 to behave simi-
larly to cycles 16 –23, the interval between E(LSD) of cycle 24 and E(FSD) of cycle 25 should extend  
≈6 yr, inferring that E(FSD) for cycle 25 should occur sometime around 2014.

Figure 6 shows the variation of the elapsed time from EM for cycle n to E(FSD) for cycle n + 1, 
mathematically equal to t4 – t2. For the last eight cycles (16 –23), this difference has spanned 29 to 57 mo, 
averaging ≈ 47 mo with a standard deviation of 9 mo. Thus, presuming cycle 24 to behave similarly to 
cycles 16 –23, the time from EM for cycle 24 to E(FSD) for cycle 25 should be ≈4 yr. During this interval, 
there will be zero spotless days; this interval corresponds to about 2010 –2013.
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Figure 7 displays the variation of t3 + t4, which is the elapsed time from E(FSD) for cycle n to 
E(FSD) for cycle n + 1. Notice that a statistically significant downward trend is hinted, with the largest 
discrepancy being associated with cycle 15, the cycle marking the start of a string of short-period cycles. 
For cycle 24, the regression predicts the value for t3 + t4 to be 119.5 ± 20.5 mo—the 90-percent prediction 
interval.
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Figure 7.  Variation of t3 + t4 for cycles 10 –23.
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Figures 8 and 9 depict the NSDs for three intervals of time: t1, t3, and ASC. For t1, eight of the last 
eight cycles (16 –23) have had a value of NSD that spans 114 to 316 days, averaging ≈198 days with a 
standard deviation of 78 days. For t3, eight of the last eight cycles (16 –23) have had a value of NSD that 
spans 226 to 568 days, averaging ≈361 days with a standard deviation of 133 days. More interestingly, for 
ASC, there appears to exist a statistically significant downward trend in NSD (r = – 0.7 and se = 63.8), such 
that during the rising portion of cycle 24, one should expect < 215 spotless days (100 ± 114 days).

300
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Cycle
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Figure 8.  Variation of NSD during t1 for cycles 10 –23.

2.3  Parametric Correlations

Figure 10 shows scatterplots of t2, t3, and t4 against t1. Expressed as linear regressions, all are 
found to be statistically significant; expressed as 2 × 2 contingency tables, only the latter two scatter-
plots are statistically meaningful. Thus, knowledge of t1 allows for determination of the later occurring 
parameters t2, t3, and t4. Furthermore, knowledge of t1 seems to provide a strong indication for the period 
class of a sunspot cycle, with shorter period usually being associated with shorter t1 (≤ 40 mo) and longer 
period usually being associated with longer t1 (≥ 62 mo). The recent behavior of t1 (cycles 16 –23) has 
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Figure 9.  Variation of NSD during t3 and ASC for cycles 10 –23.

consistently been of shorter length and six of seven of the fully described cycles have been of shorter 
period. (Recall that, as yet, cycle 23’s period remains unknown.) Presuming cycle 24 to have the aver-
age length of 34 mo for t1, based on cycles 16 –23, then t2, t3, and t4 equals, respectively, 24 ± 11 mo,  
54 ± 18 mo, and 70 ± 24 mo using the inferred regressions—the 90-percent prediction intervals.

Figure 11 displays the scatterplots of t2 and t4 against t3. Expressed as linear regressions, both 
are found to be statistically significant; expressed as 2 × 2 contingency tables, only the latter scatterplot is 
statistically meaningful. Thus, knowledge of t3 allows for determination of the later occurring parameters  
t2 and t4. Presuming cycle 24 to have the average length of 54 mo for t3, based on cycles 16 –23, then t2 
and t4 equals, respectively, 25 ± 9 mo and 71 ± 17 mo—the 90-percent prediction intervals. 

Figure 12 depicts the scatterplot of t4 against t2. Expressed as a linear regression, it is found to be 
statistically significant; expressed as a 2 × 2 contingency table, it is not. Thus, knowledge of t2 allows for 
determination of the later occurring parameter t4. Presuming cycle 24 to have the average length of 25 mo 
for t2, based on cycles 16 –23, then t4 equals 68 ± 22 mo—the 90-percent prediction interval.
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Figure 11.  Scatterplots of (a) t2 and (b) t4 versus t3.

 Figure 13 shows the scatterplot of t1 for cycle n + 1 against t4 for cycle n. The correlation between 
the parameters is statistically important, whether it is expressed linearly or as a 2 × 2 contingency table. 
Furthermore, it is a valuable correlation that is directly applicable for predicting t1 for cycle 24, since t4 
for cycle 23 has been determined (equal to 72 mo, on the basis of January 2004 being the E(FSD) for 
cycle 24; see table 1), indicated by the downward-pointing arrow along the x axis. Based on the linear 
fit, t1 for cycle 24 is expected to be ≈36 ± 21 mo—the 90-percent prediction interval. Based on the 2 × 2 
contingency table, because t4 for cycle 23 is to the right of the median (=50 mo, the vertical line), the 
expected value for t1 for cycle 24 is expected to fall in the lower right quadrant of the 2 × 2 contingency 
table, indicating that its value should be < 40 mo (the horizontal line), probably somewhere between  
25 and 36 mo—the observed range of values for the lower right quadrant. Using January 2004 as 
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Figure 12.  Scatterplot of t4 versus t2.

E(FSD) for cycle 24 and expecting t1 for cycle 24 to measure about 25 –36 mo, based on the 2 × 2 contin-
gency table, it follows that Em for cycle 24 should occur sometime in 2006 and implies that cycle 23 is a 
cycle of shorter period.

Figure 14 displays the scatterplot of Rm against t1. The correlation, whether expressed linearly 
or as a 2 × 2 contingency table, is statistically important. Based on the linear fit and using t1 equal to  
34 mo (the average of t1 values for cycles 16 –23), Rm for cycle 24 is expected to be ≈7.9 ± 4.6—the 90-
percent prediction interval. Based on the 2 × 2 contingency table, because t1 for cycle 24 is expected to be  
< 40 mo, Rm for cycle 24 should be in the upper left quadrant of the table, inferring that its value will be 
larger than ≈5.4.

Figure 15 depicts the scatterplot of Rm for cycle n + 1 against t4 for cycle n. Expressed as a linear fit, 
the correlation is statistically important. Since t4 has been determined to be ≈72 mo for cycle 23, denoted by 
the downward-pointing arrow along the x axis, Rm for cycle 24 should measure ≈ 8.1 ± 4.7—the 90-percent 
prediction interval.
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Figure 16 shows the scatterplot of Rm against NSD during t1. The correlation is statistically impor-
tant, whether expressed as a linear fit or in terms of a 2 × 2 contingency table. As noted earlier, NSD during 
t1 has had a much narrower range during cycles 16 –23 than during previous cycles (see fig. 8), averag-
ing ≈198 days with a standard deviation of 78 days. Presuming that NSD during t1 for cycle 24 will also 
be near 200 days, then, according to the linear fit, Rm for cycle 24 should be equal to ≈7.3 ± 4.8—the  
90-percent prediction interval. Based on the 2 × 2 contingency table, Rm should fall within the upper left 
quadrant, meaning that it should be larger than 5.1.

15

10

5

0
1000

NSD (t1)

R
m

200 300 400 500 700600

y

y  � 9.542 – 0.011x
r  � 0.69, r2 � 0.476
se � 2.7, cl � �99%

P ��1.5%  1
  6

6
1

Figure 16.  Scatterplot of Rm versus NSD during t1.
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Figure 17 displays scatterplots of RM against t1, t2, and t3. Expressed as linear fits, all correla-
tions are found to be statistically important. Expressed as 2 × 2 contingency tables, only the correlation 
between RM and t3 is found to be statistically important; the correlation between RM and t1 is margin-
ally significant. As yet, none of these parameters is strictly known, although an estimate for the expected 
value of t1 for cycle 24 has been given above (from fig. 13 on the basis of the value of t4 for cycle 23) and 
values for all the parameters can be estimated from their cyclic variations (fig. 5). Because t1 for cycle 24 
is expected to be < 40 mo, probably in the range of 25 to 36 mo, using the average value of t1 for cycles 
16 –23 (equal to 34 mo), implies that RM for cycle 24 is expected to be equal to ≈136.4 ± 61.8—the 90- 
percent prediction interval. For t2, using the average value found for cycles 16 –23 (equal to 25 mo) sug-
gests an RM equal to ≈133.6 ± 59.9—the 90-percent prediction interval. Similarly, for t3, using its average 
value for cycles 16–23 (equal to 54 mo) suggests an RM equal to ≈139.500 ± 54.5—the 90-percent pre-
diction interval. Together, these predictions seem to support the view that RM for cycle 24 likely will be 
larger than average in size, hence, located within the upper left quadrant of each of the subfigures.

Figure 18 depicts scatterplots of RM against NSD during t1 and NSD during ASC. For the RM 
against NSD scatterplots, the correlation is statistically significant, whether plotted linearly or as a 2 × 2 
contingency table. Using a value of ≈200 for NSD (t1), RM for cycle 24 is expected to be ≈135.3 ± 55.6—
the 90-percent prediction interval, based on the linear fit, and greater than or equal to ≈115, based on the 
2 × 2 contingency table. For the latter, neither the linear fit nor the 2 × 2 contingency table is found to be 
statistically important, only of marginal or near marginal significance.

Figure 19 shows the scatterplot of PER versus t3 + t4. On the basis of the 2 × 2 contingency table, 
the distribution appears to be of marginal statistical significance. The importance of the plot is that a value 
of 117 (see table 1) for t3 + t4 has been determined for cycle 23, denoted by the downward-pointing arrow 
along the x axis, inferring that cycle 23 likely will be a cycle of shorter period. Hence, its period should 
fall in the lower left portion of the figure.
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3.  CONCLUSION

Section 2 has shown that spotless days can be used to characterize the sunspot cycle, in particu-
lar, the timing and size of its minimum and maximum amplitudes, and perhaps the length of the cycle. 
Variations of possibly systematic behavior are seen in the time between first spotless day occurrence and 
minimum amplitude occurrence (t1), the time between last spotless day occurrence and maximum ampli-
tude occurrence (t2), the time between first and last spotless day occurrences (t3), the time between last 
spotless day occurrence for cycle n and first spotless day occurrence for cycle n + 1 (t4), the time between 
maximum amplitude occurrence for cycle n and first spotless day occurrence for cycle n + 1 (mathemati-
cally equivalent to t4 – t2) and the time between first spotless day for cycle’s n and n + 1 (or t3 + t4). For 
cycles 16 –23, t1 has averaged ≈34 mo, ranging between 25 and 40 mo; t2 has averaged ≈25 mo, ranging 
between 20 and 29 mo; t3 has averaged ≈54 mo, ranging between 44 and 75 mo; and t4 has averaged  
≈72 mo, ranging between 50 and 83 mo. Also, a statistically significant, linear downward trend (r = – 0.7 
and se = 63.8 days) in actual number of spotless days occurring in the ascending portion of the cycle is 
suggested, such that during the rise of cycle 24 there is only a 5-percent chance that more than 215 spotless 
days are expected. Likewise, there appears to exist a statistically significant, linear upward trend (r = 0.726 
and se = 2.6 units of sunspot number) in Rm, such that for cycle 24 there is only a 5-percent chance that it 
will measure < 5.9.

Parameters t2, t3, and t4 are each correlated with t1 and t1 for cycle n + 1 correlates strongly with t4 
for cycle n. Because E(FSD) for cycle 24 occurred in January 2004, t4 for cycle 23 measures ≈72 mo. Such 
a value suggests that t1 for cycle 24 will measure about 25–36 mo, implying that minimum amplitude for 
the next cycle will occur sometime in 2006 and that cycle 23 is a cycle of shorter period (also true from 
the PER versus t3 + t4 plot; see fig. 19).

The maximum amplitude RM is found to correlate strongly with t1. Presuming that t1 for cycle 24 
will be about 25 –36 mo, RM for cycle 24 is expected to be ≈136, which agrees closely with its expected 
value based on the inferred linear upward trend of maximum amplitude of group sunspot number. 

Figure 20 shows the variation relative to sunspot minimum occurrence of the average num-
ber of spotless days and the number of cycles having spotless days for cycles 16 –23. Clearly, the 
nearer to Em, the larger the average number of spotless days per month, with more than half of cycles  
16 –23 having a spotless day within 2 yr of sunspot minimum. If cycle 24’s minimum is to occur in the 
latter half of 2006, then plainly the number of spotless days will become more pronounced during 2005 
and 2006.
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